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A spheroid is an ellipsoid having two axes 
(b) of equal length. 

Prolate Oblate 

a 

b b 

a 

a > b b < a 



Spheroid 
Geometry 

For an oblate 
spheroid, c is a 

complex 
number 



Satisfying the Uniform Internal Pressure 
Boundary Condition 

Eshelby, 1957 

Yang, 1988 

Centers 
of 

Dilatation 

Uniform 
Internal 
Pressure 

Double 
Forces 

Line distribution, 
variable strength 

Uniform distribution, 
constant strength 

Strength varies 
quadratically 



Volterra’s Equation for Displacement as Expressed by 
Yang et al., 1988 

Center 
of 

Dilatation 

Mixed 
Double 
Forces 

Vertical 
Double 
Force 

Horizontal 
Double 
Force 

Point Force Green’s functions = 

Strength function for Center of Dilatation = 

Strength function for Double Forces = 

= Spheroid Dip 



Volterra’s Equation for Displacement as Expressed by 
Yang et al., 1988 

Center 
of 

Dilatation 

Mixed 
Double 
Forces 

Vertical 
Double 
Force 

Horizontal 
Double 
Force 

Point Force Green’s functions = 

α1ξ2 + α2ξ + α3 = 

β1ξ2 + β2ξ + β3 = 

= Spheroid Dip 



Volterra’s Equation for Displacement as Expressed by 
Yang et al., 1988 

Center 
of 

Dilatation 

Mixed 
Double 
Forces 

Vertical 
Double 
Force 

Horizontal 
Double 
Force 

Point Force Green’s functions = 

a1− b1 (ξ2 + c2) = 

a1ν (ξ2 + c2)/b2 = 

= Spheroid Dip 

a1 and b1 are the unknown 
coefficients that define the 
strength functions 



Methodology of Solution 
1. Solve integral using full space Green’s 

functions, assuming θ = 90°. 
 

2. Determine parameters (a1 and b1) 
defining strength functions by using 
uniform pressure boundary condition. 
 

3. Solve integral using half space Green’s 
functions and combine with strength 
function parameters found above. 



1. Solve Integral with Full Space Green’s 
Functions 

θ = 90° 

Wolfram Research, Inc., Mathematica, 
Version 9.0, Champaign, IL (2012). 



2. Determine strength function parameters  

Pressure at x1 = 0 and x3 = a 

Pressure at x1 = b and x3 = 0 

Values for a1 and b1 depend only on geometry of 
spheroid and elastic constants 



2. (continued) Check Boundary Condition 
Plugging in the values for a1 and b1 derived above, we can test the 

uniform pressure boundary condition 

P(φ) = nT S n 

Surface normal vector as function of φ 

Stress tensor as function of φ 

φ 



3. Solve Integral with Half Space Green’s 
Functions 

Although Yang’s 1988 paper 
has typos, the presented 
solution is otherwise correct. 

My work extends Yang’s by providing: 
• Displacement derivatives, strains, and stresses 
• Properly handled limiting cases 
• Proof that Yang’s method works for oblate spheroids 
• A very good approximation to the volume/pressure relationship 
• Error-free code, validated by Mathematica 
 



How Well is the Uniform Pressure Boundary 
Condition Satisfied? 

Spheroid Parameters 

a = 3000 m 
b = 2000 m 
Depth = 10000 m 
P/µ = 1 



How Well is the Uniform Pressure Boundary 
Condition Satisfied? 

Spheroid Parameters 

a = 3000 m 
b = 2000 m 
Depth = 5000 m 
P/µ = 1 

As depth decreases the 
departure from 
uniformity increases. 



How Well is the Uniform Pressure Boundary 
Condition Satisfied? 

Spheroid Parameters 

a = 3000 m 
b = 2000 m 
Depth = 50000 m 
P/µ = 1 

As depth goes to infinity 
the deviation from 
uniformity goes to zero. 



The Oblate Spheroid 

Spheroid Parameters 

a = 2000 m 
b = 3000 m 
Depth = 10000 m 
P/µ = 1 

Why does this work?  
When a < b, then c 
becomes complex! 



When c is Complex, the Resultant 
Displacements are Still Real 

Consider the full space version of Volterra’s equation: 

Re-write the equation for the oblate case: 

We can then push the i into the variable of integration, ξ, 
and expand the result. 



Oblate Spheroid Deformation in a Full Space 

But, from a practical point of view, re-writing the equations is 
not necessary, provided your programming language supports 
complex numbers – the imaginary part of the output always 
cancels to zero ( ± rounding errors). 

Real 
Expressions  



The Oblate Spheroid as a Goes to Zero 

Spheroid Parameters 

a = 2000 m 
b = 3000 m 
Depth = 10000 m 
P/µ = 1 



The Oblate Spheroid as a Goes to Zero 

Spheroid Parameters 

a = 1000 m 
b = 3000 m 
Depth = 10000 m 
P/µ = 1 



The Oblate Spheroid as a Goes to Zero 

Spheroid Parameters 

a = 500 m 
b = 3000 m 
Depth = 10000 m 
P/µ = 1 



The Oblate Spheroid as a Goes to Zero 

Spheroid Parameters 

a = 0 m 
b = 3000 m 
Depth = 10000 m 
P/µ = 1 



Comparison to Fialko’s Penny-shaped Crack 

Depth / Radius (b) 

Fialko, et al. (2001) 
Oblate spheroid Fialko’s 

solution is 
exact 

Oblate 
spheroid is 

approximate 

Oblate spheroid with a = 0 equivalent to the solution of Sun, 1969 



The Oblate Spheroid as a Goes to Zero 

Spheroid Parameters 

a = 0 m 
b = 3000 m 
Depth = 3000 m 
P/µ = 1 



Pressure / Volume Relationship 
Volume Prior to Pressurization: 

Volume After Pressurization: 

Volume Change: 

Partial derivatives with respect to axes: 

Approximate volume change: 

a 

b 

δa 

δb 

and 



Pressure / Volume Relationship 

Derive analytical expressions for δa and 
δb in a full space: 

Insert into: 

Giving the key relationships: 

a 

b 

δa 

δb 



Comparison to Other Approximations 

Tiampo et al., 2000, derived 
an approximation of 
volume change presented 
there in equation 18: 

Compared to: 

Aspect Ratio (a/b) 



The End 

Please visit: 
volcanoes.usgs.gov/software/spheroid 

for Matlab code and Mathematica notebooks 
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