Link to USGS home page.
Contact USGS

  • Assess
  • Prepare
  • Forecast
  • |
  • Activity
  • Products
  • Observatories
  • About

= Yellowstone National Park
= Caldera
Yellowstone Monthly Update
Monday, October 02, 2017 9:45 AM US/Mountain
Current Volcano Alert Level: NORMAL
Current Aviation Color Code: GREEN
YVO's Mission
The Yellowstone Volcano Observatory provides timely monitoring and hazard assessment of volcanic, hydrothermal, and earthquake activity in the Yellowstone Plateau region.

Features   (archive)
Quick Links

Hello Letter from Michael Poland, YVO SIC 2017
October 05, 2017

On September 1, I succeeded Jake Lowenstern as the Yellowstone Volcano Observatory (YVO) Scientist-in-Charge. To say I have some big shoes to fill is an understatement. During his 15 years in the position, Jake oversaw the growth of YVO into a collaborative consortium of eight organizations, helped guide the expansion of geophysical and geochemical monitoring, encouraged (and also initiated!) a broad array of research, and tirelessly advocated for communicating and sharing the wonders of Yellowstone with the world. I can never replace Jake, but I hope to prove an effective steward of his efforts, and I will continue to advance the goal of improving our knowledge of the inner workings of Yellowstone as well as other volcanic systems in the United States and, indeed, around the world.

My first visit to Yellowstone National Park was 30 years ago, when my family gathered for a reunion camp out at Grant Village on the shores of West Thumb. The memories of that experience are vivid, from waiting patiently for Old Faithful to erupt, to contributing to a "bison jam" in Hayden Valley. In subsequent years, I visited the Park on numerous occasions, both on vacation and professionally as I pursued a career in Earth science. The Park captivated my imagination and helped to stimulate my interest in geology, and I am pleased to now be able to play a small role in helping to grow our understanding of Yellowstone's behavior.

My USGS career began in 2002 at the Cascades Volcano Observatory, where I was tasked with developing a capability for assessing ground deformation using radar data from orbiting satellites. A high point of my time in the Cascades was in 2004, when I was part of the team that responded to the reawakening of Mount St. Helens—my first experience in responding to a volcanic crisis. I also was able to make numerous trips to Yellowstone as part of USGS efforts to map ground deformation throughout the caldera system. This work had me collaborating closely with Dan Dzurisin, whose studies have redefined how we view the behavior of volcanic calderas.

In 2005, I moved to the Island of Hawaii, where I spent 10 years conducting research as a staff member at the Hawaiian Volcano Observatory. I was very lucky to not only work with many talented scientists, but also to experience some incredibly dynamic volcanic events and earthquakes—the M6.7 Kiholo Bay earthquake in 2006, the start of Kilauea's currently ongoing summit eruption in 2008, and a "curtain of fire" fissure eruption at Kilauea in 2011, to name a few. My scientific explorations, done in collaboration with numerous Observatory and university scientists, focused on figuring out the patterns of ground deformation over time (especially using satellites), understanding the changing rates of magma supply to the volcanoes of Hawaii, and using microgravity measurements to map changes in subsurface magma storage.

I returned to the Cascades Volcano Observatory in 2015, resuming my work using satellites to track ground deformation, implementing gravity measurements in the region, and generally aiming to better understand the behavior of volcanoes in Washington and Oregon.

In my new role with YVO, I plan to apply the lessons learned over my 15-year USGS career to research in Yellowstone. This past summer, I began working with colleagues from the US and other countries to use gravity as a means of better understanding the nature of the subsurface fluids (gas, water, and magma) that drive seismicity and deformation of the Yellowstone system. This effort continues work begun decades earlier by Bob Smith and co-workers, and is leading me to new collaborations with fellow YVO scientist Jamie Farrell and others at the University of Utah. My interest in magma supply to Hawaiian volcanoes is also relevant to Yellowstone (both are hotspot systems), and I plan to examine a variety of data to investigate how magma is supplied to the reservoir beneath the caldera.

In addition, I hope to continue the expansion of monitoring systems at Yellowstone, augmenting the current network with additional geochemical and geophysical sensors that will help to address such important questions as: What processes drive the frequent earthquake swarms in and around the caldera? What causes abrupt changes in surface deformation over time and space? What is the nature of Yellowstone's magma reservoir?

Relaying information about hazards, especially in collaboration with the National Park Service (including park geologist Jefferson Hungerford and the team at the Yellowstone Center for Resources), will continue to be a priority. Everyone knows of the catastrophic eruptions that have occurred as part of Yellowstone's geologic past, but far more likely to impact the region on human time scales are hydrothermal explosions. Small explosions take place every few years, while a few larger explosions have occurred in the past ~10,000 years, leaving craters that dot portions of the Park's landscape.

I am also optimistic that we can grow our understanding of other volcanic fields in the western United States, including those in Arizona, Utah, New Mexico, and Colorado, over which YVO has operational responsibility.

A particularly attractive aspect of my new job is the opportunity to interact with both the public and other scientists. YVO is unique in that it is a consortium of organizations, including the USGS, Yellowstone National Park, the Universities of Utah and Wyoming, UNAVCO, and the state geological surveys of Wyoming, Montana, and Idaho. The ability to collaborate with scientists of these, and other, institutions is, frankly, a thrilling prospect. No less enticing is the opportunity to share my enthusiasm for Yellowstone, and volcanology in general, with all of you. As my friends and colleagues can no doubt attest (perhaps not without a touch of sarcasm), I enjoy talking. A lot.

With the introduction behind us, time to get to work—there is much to learn! We will do our very best to update the YVO website and USGS Volcanoes Facebook and Twitter feeds with information on the status of ongoing research and interesting geologic activity. In the meantime, I hope to see you around the wonderland that is Yellowstone National Park!

Taking a closer look at a Yellowstone earthquake swarm
July 13, 2017

Seismic networks locate earthquakes by comparing the arrival times of seismic waves emanating from the earthquake location, or hypocenter. Very small earthquakes (less than a Magnitude 1) cannot be detected on distant seismometers and sometimes even well-located earthquakes may have horizontal and depth uncertainties of more than 0.5 km.

In order to more fully study a 2010 earthquake swarm on the Madison Plateau, in the northwest part of the Yellowstone Caldera, USGS seismologist David Shelly used a specific timeframe of seismic data and mathematical algorithms to detect and relocate tiny earthquakes. Shelly and his colleagues were able to recognize 8710 events, including many small events with magnitude as low as -1. By including these events, Shelly and his colleagues were able to understand more about the relative location of all the earthquakes and how the earthquakes migrated along the crustal fault during the 2010 swarm. The research was published in 2013 in the Journal of Geophysical Research, co-authored with colleagues form the University of Utah. Read more in the web article Taking a closer look at a Yellowstone earthquake swarm.

Featured Articles
Yellowstone Volcanic History
Yellowstone Hazards
University of Utah Seismographs
University of Utah Research Group
Images, Podcasts, Videos, and Webcams
Frequently Asked Questions

Quick Facts
Location: Wyoming and Montana
Latitude: 44.615° N
Longitude: 110.6° W
Elevation: 2,805 (m) 9,203 (f)
Volcano type: Caldera
Composition: basalt to rhyolite
Most recent eruption: 70,000 years ago—lava, current—hydrothermal explosions
Alert Level: Normal (2017-10-02 15:45:24)