Link to USGS home page.
USGS HOME
Contact USGS

  • Assess
  • Prepare
  • Forecast
  • |
  • Activity
  • Products
  • Observatories
  • About

= Yellowstone National Park
= Caldera
Yellowstone Monthly Update
Thursday, December 01, 2016 11:49 AM US/Mountain
Current Volcano Alert Level: NORMAL
Current Aviation Color Code: GREEN
 
YVO's Mission
The Yellowstone Volcano Observatory provides timely monitoring and hazard assessment of volcanic, hydrothermal, and earthquake activity in the Yellowstone Plateau region.

Features   (archive)
Quick Links

Upcoming studies target Yellowstone's geothermal waters
November 04, 2016

Beginning November 7, and lasting two to four weeks, two exciting studies will take place while Yellowstone National Park is in between its summer and winter seasons. They are aimed at learning more about the shallow water system that fuels the famous hot springs, geysers, and other thermal features at Yellowstone. The first is a helicopter-borne electromagnetic study of geothermal areas near the Firehole River, along the Norris-Mammoth corridor, and at the north end of Yellowstone Lake. The second is a seismic study focusing on the area near Old Faithful. The need for these studies are a result of published recommendations from a 2013 scientific committee that formed with the goal to understand ways to reduce human impacts on the park's geothermal features and protect existing park infrastructure from encroachment of hot ground.

The U.S. Geological Survey (USGS), University of Wyoming, and Aarhus University, Denmark, will collaborate to study the groundwater system that feeds the iconic hydrothermal features of Yellowstone National Park. Airborne geophysical electromagnetic (EM) surveys are one of the unique tools that experts can use to examine and map subsurface location, size, shape, salinity and temperature of groundwater. The survey will map important properties of soils and subsurface rocks in order to learn more about Yellowstone's groundwater resources. Because it involves low-level helicopter flights that may disturb park visitors, the research was allowed after roads officially close, and before it opens for winter use.

The University of Utah, in collaboration with the University of Texas El Paso and the National Park Service, will place closely spaced quart-jar-sized, portable seismometers around the Upper Geyser Basin, focusing on the immediate area around Old Faithful Geyser. This is a continuation of a project started in November 2015 when a more general array was deployed for two weeks. The principal objectives of these deployments are to create an image of the shallow seismic velocity structure of the Upper Geyser Basin. The results will help the park service plan for engineering projects relating to developed structures in the area. In addition, data will help scientists better understand the underground fluid flow pathways and hydrothermal properties between geysers and hot springs of the Upper Geyser Basin, including Old Faithful. Importantly, the dense grid of seismometers deployed on the cone of Old Faithful will help us learn more about how the geyser acts before, during, and after eruptions.

To learn more about these surveys, download our November 2016 FAQ.
New videos highlight Yellowstone science
August 23, 2016

Over the past few years, we've recorded interviews with a number of the scientists who did critical work revealing Yellowstone's volcanic past and present. Our latest installment includes two interviews with Dr. Ken Pierce, a glaciologist and geomorphologist who works today as an emeritus scientists with the USGS in Bozeman, MT. Pierce has written scores of important articles on the geology of Yellowstone, and these two videos give you a flavor of the man and his career.

Glaciation in the Greater Yellowstone Area
Detecting "heavy breathing" (subtle inflation and deflation) of Yellowstone Caldera
USGS Scientist Presents Ash Transport Lecture
June 08, 2016

Interested in supereruptions? This May 2016 talk by USGS scientist Larry Mastin summarizes how we model ash transport after volcanic eruptions, which was applied to some of the big eruptions in Yellowstone's past. The work follows on to Larry's 2014 publication that was summarized as a series of FAQs on our website. The lecture discusses Yellowstone and it's history, but it also discusses the broader study of ash plumes in the atmosphere and how researchers are keen to develop methods to estimate how and where ash will fall after big eruptions.

Our website multimedia section hosts a variety of earlier lectures on Yellowstone (about 15 hours worth!).
Publications
Featured Articles
Internet Mapping Service
Yellowstone Volcanic History
Yellowstone Hazards
University of Utah Seismographs
University of Utah Research Group
Images, Podcasts, Videos, and Webcams
Frequently Asked Questions

Quick Facts
Location: Wyoming and Montana
Latitude: 44.615° N
Longitude: 110.6° W
Elevation: 2,805 (m) 9,203 (f)
Volcano type: Caldera
Composition: basalt to rhyolite
Most recent eruption: 70,000 years ago—lava, current—hydrothermal explosions
Alert Level: Normal (2016-12-01 17:49:44)