Educational and professional development opportunities are available this summer for teachers interested in expanding their curriculum to include an emphasis on Cascade Range volcanoes. The USGS-CVO, in cooperation with other agencies, offers these workshops and resources for community and classroom educators.
At the USGS-CVO, scientists conduct research about volcano hazards so that policymakers and the public can prepare adequately for the next eruption in the Cascades. Here are opportunities to engage USGS scientists and learn more about hazards in your area and how to be prepared.
The Three Sisters are a cluster of volcanoes near Bend, Oregon, that bear little family resemblance. North Sister is the elder, now a glacially ravaged stratocone that consists of hundreds of thin rubbly lava flows. Middle Sister is an andesite-basalt-dacite cone, with gentle-sloping west flank and steep east face. Snow and ice fills the youngest cone, South Sister, a bimodal rhyolite-to-intermediate composition edifice that was constructed within the last 50,000 years. The authors of this new geologic map spent about one month each summer from 2000 to 2009 mapping the volcanic field on foot and collecting samples for geochemical analyses. View the product of their efforts, Geologic Map of Three Sisters Volcanic Cluster, Cascade Range, Oregon.
Earlier this month, members of the Volcano Disaster Assistance Program (VDAP) helped lead a workshop with Latin American Volcano seismologists in Manizales, Colombia. The workshop brought together seismologists and volcanologists from 12 nations in Latin American and the Caribbean to share information and improve seismic methods to forecast volcanic eruptions. USGS scientists discussed a global data set of observed patterns of precursory earthquakes, use of seismic data to monitor volcanic debris flows, and participated in discussion groups on infrasound and a variety of other topics related to eruption prediction. For more information on VDAP’s work, visit the Volcano Disaster Assistance Program website.
The Mount St. Helens website has been updated with a new design and the most recent scientific research about its rich volcanic history. The change was made as a part of the ongoing update to all Volcano Hazards Program webpages. We hope you enjoy this new learning experience about the most active volcano in the contiguous U.S. Photo from October 5, 2004.
A new video shows changes inside Mount St. Helen's crater from 2004 to 2012. The images were created from aerial photographs that were processed with photogrammetry software to collect a 3-D point cloud, which was then used to create shaded relief digital elevation models (DEMs). Information regarding volume and rates of growth of the lava dome and Crater Glacier are extracted from DEMs and used to monitor surface changes in the crater. View the time-series online, Time-series of dome and glacier growth at Mount St. Helens, Washington, 2004-2012. You can also view camera-captured time-lapse for this same period but from a different perspective. Images taken by a remote camera on the northwest flank of the volcano show dome growth and the movement of Crater Glacier across the crater floor. Watch Mount St. Helens' Runaway Glacier.
USGS announces the launch of six USGS Volcano Web Shorts in a growing collection of volcano video offerings on the USGS YouTube website. Meet scientists of the USGS Volcano Science Center and learn more about their jobs as they watch over 169 known active volcanoes within the US and its territories. Are you a student interested in a volcanology career? These two-to-four-minute web shorts provide glimpses into some of many professions that contribute to the science of volcanology.
Watch videos on the following topics:
Field work continues at the volcano. The focus of winter work is primarily on maintaining remote monitoring equipment, making direct observations of the impacts of storm events, and measuring the transportation of sediments in swift moving streams. The work is necessary to keep the early warning systems functional, assess hazards, and engage in mitigation measures, if needed. View the Winter 2013 Fieldwork images online.
Crews visited the Spirit Lake gaging station at Mount St. Helens to correlate the water level on a staff outside the station with readings from pressure transducers inside the tunnel. The outlet of Spirit Lake was dammed by a debris avalanche during the May 18, 1980 eruption. In 1985, a tunnel was constructed so that as the level of the lake rises, water flows through the tunnel to South Coldwater Creek. Logs and other debris floating in the lake can become lodged near the tunnel opening. The transducers are used to track water level changes inside the tunnel. By comparing the water level changes in the tunnel with the lake level measured at the gaging station, scientists can determine if the logs are stacking up, and potentially, blocking the tunnel entrance. Read station notes and find data online at the Spirit Lake at Tunnel gaging station.
Over 90,000 maps and reports by more than 600 publishers are available in one location - on the recently redesigned National Geologic Map Database. Users can go online to view geologic, geophysical, natural resource and hazard maps for many locations within the United States. Popular formats make the database easy to use. What is the geology of your backyard? Find out by searching The National Geologic Map Database.
We are currently upgrading our website to provide a new look and improved functionality. When completed, the website will offer streamlined access to information about volcano hazards and preparedness, maps, images, monitoring data, and volcano histories. We apologize for any inconvenience while this process is underway.
CVO scientists John Ewert, Nate Wood, and Willie Scott conducted a FEMA Volcanic Crises Awareness Course at the local emergency management agency (Clark Regional Emergency Services Agency or CRESA). The course, developed by the National Disaster Preparedness Training Center at University of Hawaii with substantial contributions from other USGS scientists, provides an overview of volcanic processes and hazards, current monitoring and hazard assessment tools, volcano warning systems, and community preparedness. The course is designed to assist decision-makers, emergency managers, response personnel, planners, and other professionals from both public and private sectors in understanding and preparing for future volcanic crises. For more information on emergency preparedness and how you can be ready, visit CRESA.
The 1980 eruption of Mount St. Helens, Washington, clogged the upper reaches of the North Fork Toutle River with sediment. In 1989, the U.S. Army Corps of Engineers completed a Sediment Retention Structure (SRS) to minimize the downstream transport of the sand, silt and gravel. Since construction of the SRS the sediment trap has filled to more than 50 percent of capacity, but its efficiency has diminished and sediment is bypassing the structure. CVO Geophysicist Roger Denlinger conducted numerical simulations to assess the ability of the structure to withstand potential large flow events, either from debris flows or from sediment-laden floods. In the model, large debris flows originating from release of lake water or from an eruption of Mount St. Helens never topped SRS, but instead filled the braided channels upstream of the SRS. These types of flows would however, reduce sediment storage capacity in the future. Read Effects of catastrophic floods and debris flows on the sediment retention structure, North Fork Toutle River, Washington, online. You can also check out discharge data from the North Fork Toutle River station located below the SRS. In 2012 the U.S. Army Corps of Engineers raised the level of the spillway to trap additional sediment.
CVO Scientists John Ewert, Andy Lockhart, Peter Kelly, and Chris Lockett were featured in a short program about volcanic hazards and the evolution of the monitoring techniques aimed at understanding volcanic behavior. The catastrophic eruption of Mount St. Helens in 1980 re-emphasized the need to closely study and monitor Cascade volcanoes by analyzing the seismicity associated with magma or other fluids moving under the volcano, the swelling of a volcano’s flanks, and the type and amount of volcanic gases emitted. With so many people and infrastructure located near potentially active Cascade volcanoes, it is important to have integrated, continuous monitoring networks so people can be prepared for the next eruption. Watch the story Deceptive Beauty: Volcanoes Ready to Blow, online.
When magma rises towards the Earth's surface, it produces emissions of sulfur dioxide and other gases. Scientists use miniature spectrometers to measure the absorption of light as it passes through a volcanic plume to determine the concentration and emission rate of gases in the plume. CVO post-doctoral researcher Christoph Kern, with support from colleagues from CVO, the University of Heidelberg and the Hawaiian Volcano Observatory, has developed a new method for evaluating spectroscopic data that takes into account the different paths light can take on its way through the plume. Using the new technique, the researchers are now able to make significantly more accurate assessments of degassing activity at Kilauea volcano (Hawaii) and at other active volcanoes. Monitoring the changes in emission rates of sulfur dioxide is very important for understanding volcano behavior and determining volcanic hazards.
Read Improving the accuracy of SO2 column densities and emission rates obtained from upward-looking UV-spectroscopic measurements of volcanic plumes by taking realistic radiative transfer into account, online.
USGS-CVO research geophysicist Jeff Wynn is an author on an article in Sea Technology magazine describing a USGS-developed technology to map the sub-seafloor for placer heavy minerals, buried wrecks, and trenched cables. Using the marine induced polarization technique, a ship tows an instrument array through the water or along the sea floor. An electrical signal is sent through the array and the secondary response is measured. The frequency of the response is diagnostic of certain deposits beneath the seafloor and could also be used to monitor biodegradation of an oil plume in real time in the deep ocean. Laboratory measurements indicate that the induced polarization technique can detect and map oil in the seawater column down to below 0.1% by volume. Read an excerpt from Induced Polarization for Subseafloor, Deep-Ocean Mapping, online.
Geologist Dave Ramsey and research collaborator Lee Siebert led groups of high school students from Kelso and Longview, Washington-area schools on interactive hikes of the Hummocks Trail at the Mount St. Helens National Volcanic Monument. The hikes were part of a STEM (Science, Technology, Engineering, and Math) initiative coordinated by the Southwest Washington Workforce Development Council and designed to give students experience with scientific investigations in the field and laboratory. On the hikes, students learned about the techniques used by scientists to understand the formation of the hummocks that occurred as a result of the massive debris avalanche of the May 18, 1980 eruption. For more information on exploring Mount St. Helens, visit the Mount St. Helens National Volcanic Monument webpage.
Glacier Peak is the most remote of the five active volcanoes in Washington State. It is not prominently visible from any major population center so its hazards tend to be over-looked. Since the end of the last ice age, Glacier Peak has produced some of the largest and most explosive eruptions in the state. CVO Geologist Jim Vallance is studying Glacier Peak’s tephra deposits to determine precisely when and how often the volcano has erupted, and the size of past eruptions. For more information, see the USGS Fact Sheet, Glacier Peak - history and hazards of a cascade volcano.
Diamond Craters is one of several young basalt lava fields dotting southeastern Oregon. Active between about 7320 and 7790 years ago (calibrated ages), the entire eruptive episode was less than 100 years in duration. Read more about Diamond Craters and the techniques scientists use to find the age of young lava flows and figure out how long eruptions last, in a new paper titled: Age and duration of volcanic activity at Diamond Craters, southeastern Oregon.
Scientists from CVO (VDAP) are working together with Indonesian scientists to support and enhance the Government of Indonesias' Center for Volcanology and Geologic Hazard Mitigation’s volcano monitoring and response capabilities. Five Indonesian scientists visited CVO in September, exchanging ideas and techniques for volcano monitoring and hazard assessment. The group observed hazards at Cascades volcanoes and traveled to Alaska to learn about how volcanic ash-aviation issues are handled in the US from colleagues at the Alaska Volcano Observatory, the Federal Aviation Administration and the National Weather Service. Indonesia is a country where more than 3.3 million people live very closely to active volcanoes. Through improved monitoring and warning systems, citizens can be warned of volcanic events to avoid harm. For more information on the U.S.-Indonesia efforts, read U.S. and Indonesia Partner to Reduce the Risk of Volcano Disasters and Save Lives. To learn about VDAP, see more at Volcano Disaster Assistance Program.
USGS Geologist Richard Waitt examines the deposits of pluvial Lake Chewaucan (Pleistocene), near Summer Lake, Oregon. The light colored horizontal lines are layers of ash from southern Cascade eruptions that fell on the lake, settled to the bottom and were covered by mud. This sequence represents a time period of roughly 50,000 years. Find out about ashfall hazards at Volcanic Ash: What it can do and how to prevent damage.
Recent articles in The Seattle Times discuss the completed maintenance of volcano monitoring sites at Mount Rainier and link to new photos of one of the highest remote stations in the Cascade Range. Read the stories online, Quake monitors on Mount Rainier ready and waiting, and Not just any day job: the view from 11,000 feet.
During the first week of September, scientists completed scheduled maintenance at five volcano monitoring stations between 7,000 and 11,000 feet on Mount Rainier. Work was completed by staff from the USGS Cascades Volcano Observatory (CVO) and Pacific Northwest Seismic Network (PNSN), with strong support from Mount Rainier National Park (MRNP). The stations provide continuous data streams that are critical for detecting signs of unrest at Mount Rainier. View Mount Rainier Monitoring information and a Photo Gallery of this work.
Researchers at CVO perform flume experiments to test mathematical models for interpreting and forecasting debris flow behavior. Up to 40 tons of sediment are placed behind a gate at the head of a 310-feet long flume, saturated with water and released. Data collection ports in the floor of the flume measure the forces due to particles sliding and colliding at the base of the flow, while photos and videos record surface effects. The experiments lead to development of technologies for mitigating debris flow hazards, including automated detection and warning systems and engineering countermeasures, to protect high-risk areas such as Mount St. Helens, Redoubt Volcano in Alaska, and Pinatubo Volcano in the Philippines. See past experiments at Video Documentation of Experiments at the USGS Debris-Flow Flume 1992–2006 (amended to include 2007–2009).
U.S. Geological Survey Cascades Volcano Observatory (CVO) personnel will be working in Mount Rainier National Park (MRNP) from September 4-7 to perform repairs, upgrades, and maintenance at 5 monitoring stations on the volcano. Installed in 2007-2008, the stations provide a continuous stream of real-time seismic and deformation measurements from one of the most hazardous volcanoes in the Cascade Range. A helicopter under contract to the National Park Service will assist with the high-elevation work (7,000 – 11,100 feet).
The fieldwork will be carried out by a team of 10-12 people from CVO, who will also support a University of Washington team performing similar maintenance on a remote seismic station operated by the Pacific Northwest Seismic Network (PNSN). The CVO stations, in conjunction with those from the PNSN seismic network, provide continuous data streams that are critical for detecting signs of unrest at Mount Rainier. In addition, data from the combined network is creating research opportunities for USGS and academic scientists who are investigating the inner workings of the volcano as well as studying several recent seismic swarms.
Recent articles in The Columbian describe the Mount St. Helens monitoring site upgrades and early preparations for the study of the magmatic system underneath the volcano. Read the stories online, Upgraded equipment aims to take St. Helens' pulse, and 2014 study of St. Helens magma system will be among world's largest.
CVO geologist Dave Ramsey stands on top of Wizard Island in the Crater Lake caldera, holding his Crater Lake Revealed poster. The poster, prepared from this same perspective, shows the geology of the lake floor from its deepest basins to shoreline. Mr. Ramsey was at Crater Lake to take part in an educational field trip on the geologic history and hazards of the area. Download the poster Crater Lake Revealed for your next trip to Crater Lake National Park.
Mount St. Helens is an active volcano, continuously monitored for earthquakes, ground deformation, erosion and debris flows. Clear, summer weather provides an opportunity to access remote monitoring sites for necessary repairs, to observe, quantify and track changes from previous years, and conduct new research. The image gallery, Mount St. Helens 2012 Fieldwork, highlights the summer work completed on the flanks of the volcano as well as in the crater.
On the northern flank of Mount St. Helens (Dogs Head lava dome in the background), Mike Clynne maps the surficial extent of a debris flow. Mount St. Helens has a rich and complex 300,000-year history of explosive eruptions, lava flows, dome building and debris flows. Mapping these deposits gives insight into the volcano’s eruptive past and provides a practical understanding of the geology of this area. To learn more about Mount St. Helen’s eruptive past, read Pre-1980 Eruptive History of Mount St. Helens, Washington.
While conducting routine field work at Mount St. Helens, 13-14 mountain goats were spotted one-half mile upstream of Loowit Falls. The goats crossed the Loowit canyon and headed east, climbing rough volcanic terrain to disappear around the eastern flank of the mountain. Goats have become year-round residents at the volcano, likely traveling from nearby Mount Adams or Goat Rocks to find new habitat. Read about mountain goat ecology and where to view goats at the Washington Department of Fish and Wildlife conservation webpage.
On the weekend of July 28, hikers in Canyon Creek Meadows near Three Fingered Jack (central Oregon Cascades) were surprised to find boulders and mud coating the west end of the meadow. The deposits are from a recent debris flow caused by a partial breach of a lake dammed by a young glacial moraine at the snout of tiny “Jack Glacier.” The sudden outflow from the lake incorporated rocks, sand, and mud that was deposited in a bouldery fan at the foot of the moraine with muddy water flooding the meadow and flowing into Canyon Creek. The trigger for the breach is not yet known. Such events, including two in Canyon Creek Meadows during the latter half of the 20th century, have been documented at numerous moraine-dammed lakes in the Mount Jefferson and Three Sisters area. To learn more, read Debris flows from failures of Neoglacial-age moraine dams in the Three Sisters and Mount Jefferson wilderness areas, Oregon.
Christoph Kern sets up a UV spectrometer to detect volcanic gases rising from fumaroles at Crater Rock on Mount Hood. The instrument measures the spectrum of light passing through volcanic gas and identifies individual gas species by their unique absorption “fingerprints”. The equipment is sensitive enough to detect mixing ratios of less than a part per million (one molecule of volcanic gas per one million molecules of air). In this case, the spectrometer detected low amounts of sulfur dioxide gas, similar to those found in measurements taken here last year. For more information, visit the Volcano Emission Project.
Marc Biundo and Bryan Holmes climb to Camp Schurman, at the base of Steamboat Prow on Mount Rainier (elevation 9500 feet), to check GPS equipment, troubleshoot radio telemetry, and conduct radio tests to new receiver sites off of the volcano. A Global Positioning System (GPS) was installed at the climbing hut in 2007 to monitor subtle movements of the volcano. The data shows the mountain moves several millimeters per year to the north and east, following a regional tectonic trend. Because of its location near to large population centers and the nature of the potential hazards, the USGS installed monitoring networks to be able to detect the onset of volcanic activity at Mount Rainier at the earliest possible moment. To learn more, visit the Pacific Northwest GPS Monitoring Network.
Workshop participants Tiffany Fuller and Lucas Jones reach Pinnacle Saddle, south of Mount Rainier, during an afternoon session of experiential learning. Each year, personnel from CVO and the National Park Service provide a week-long course for teachers to learn about volcanic processes, hazards, and human-volcano interactions while exploring Mount Rainier National Park. The workshop materials, which include more than 30 student activities and a field guide to geological sites of interest within the Park, is designed for middle school teachers interested in teaching about this and other Cascade peaks. To browse the activities and learn more, visit Living with a Volcano in Your Backyard: An Educator’s Guide to Mount Rainier.
A scientist (lower center) walks along the leading edge of rock debris carried downslope by Crater Glacier, documenting evidence of glacial advance into the Loowit stream channel. The glacier continues to advance at approximately 10 cm per day (about the length of a computer mouse) although the rate of advance has slowed since the 2004-2008 lava dome building ended. To learn more about Crater Glacier and see an animation of the glacier’s movement, visit Photographic Documentation of the Evolution of Crater Glacier, Mount St. Helens, Washington, September 2006–November 2009.
As snow melts from the upper reaches of Mount St. Helens, CVO scientists access remote monitoring sites to repair and replace equipment damaged by harsh winter weather. Here, the team refurbishes an acoustic flow monitor (AFM) located above the Loowit River. The AFM was designed by the USGS-CVO to detect and monitor debris flows through ground vibrations and transmit the data in real-time. AFMs are a key component of early warning systems in valleys threatened by such flows. To learn more, read about Hydrologic Monitoring of Volcanoes.
Newberry Volcano is the first of the CVO volcanoes to showcase the updated website design. The new web pages include more information about the large central Oregon volcano than the old CVO website offered. We hope you enjoy the new look and enhanced information!
Outside of Portland, Oregon, the Marmot Dam blocked the Sandy River for more than 90 years. A combination of economic and environmental issues resulted in the removal of the dam in 2007, allowing the river to flow freely over its entire length. In the hours, days and months following the breach, the USGS monitored the erosion, transport, and deposition of sediment downstream. The energetic Sandy River responded rapidly, removing a large amount of reservoir sediment in the first year. The erosion rate and channel widening diminished with time. A newly published USGS report, in collaboration with scientists at Federal agencies, academic institutions, and private companies, describes the two-year transition along the Sandy River.
Read More:
How did an eruption in Alaska, 1200 miles from Seattle, affect life in the Pacific Northwest 100 years ago this week? Learn how the June 6, 1912 eruption of Novarupta, near Katmai, Alaska affected life in the Pacific Northwest, and how future volcanic ash fall can disrupt our lives.
Read More:
May 18, 2012 marks the 32nd anniversary of Mount St. Helens' catastrophic eruption, the first volcanic eruption in the conterminous United States since the 1915 eruption of California's Lassen Peak. View archive photos of Mount St. Helens. Read a summary of events. Learn about the 1980 eruptions. Download a 2012 panorama of Mount St. Helens, and modern photos of the volcano and ongoing monitoring.
View article in The Columbian newspaper about work of the USGS Cascades Volcano Observatory.
Following two weeks of fieldwork, a three person team from the USAID-USGS Volcano Disaster Assistance Program (VDAP) has returned from Colombia where, at the request of the Servicio Geológico Colombiano (SGC; Geological Survey of Colombia), they were working to support the monitoring and eruption forecasting efforts at Nevado del Ruiz volcano. Photo shows USGS and SGC personnel working at a lahar (volcanic debris flow) detection and warning instrument site high on the flanks of Ruiz. An eruption from Nevado del Ruiz on November 13, 1985 caused over 23,000 deaths as several towns were overrun by rapidly moving volcanic debris flows. Recently, Ruiz has been showing signs that it may erupt again. To learn more about VDAP, which is based at the USGS Cascades Volcano Observatory, please visit the VDAP website.
USGS will conduct a variety of volcano-related trainings for emergency managers, aviators, health care personnel, park interpreters, and school students. See volcano preparedness materials highlighted on the 'In-Focus' web page of Washington Military Department’s Emergency Management Division. Find volcano information and educational opportunities at this website. Read the news release.
Three USGS volcanologists from the Cascades Volcano Observatory are working with our counterpart organization, the Center for Volcanology and Geological Hazards Mitigation, to install real-time GPS monitoring on Agung Volcano and to evaluate recent seismicity. Recent satellite measurements show that the volcano has been slowly inflating over the past several years. Agung is an active and dangerous volcano located on Bali, which in 1963 produced an eruption that killed more than 1000 people. The 1963 Agung eruption was similar in magnitude to the 1980 eruption of Mount St. Helens. Monitoring infrastructure enhancement is part of our Volcano Disaster Assistance Program, a partnership of the USGS and the U.S. Agency for International Development. In the photo a solar-powered GPS installation on Agung’s flanks is nearing completion. Data from this and other installations will be used to continuously measure movements of the volcano flanks and will be used with seismic and other data to provide forecasts of eruptive activity.
On April 20, a three person team from the USAID-USGS Volcano Disaster Assistance Program (VDAP) is traveling to Colombia at the request of the Instituto Colombiano de Geologia y Mineria (INGEOMINAS), to support volcano monitoring and data analysis activities at Nevado del Ruiz volcano, which has been showing signs that it may erupt soon. An eruption from Nevado del Ruiz on November 13, 1985 caused over 23,000 deaths as several towns were overrun by rapidly moving volcanic debris flows. To learn more about VDAP, which is based at the USGS Cascades Volcano Observatory, please visit the VDAP website.
Wading into the North Fork Toutle River (near Mount St. Helens, Washington), USGS Hydrotech Tami Christianson collects a water and sediment sample from mid-stream. Erosion of the huge debris avalanche deposit emplaced on May 18, 1980, continues to generate high sediment loads. Some is trapped behind the U.S. Army Corps of Engineers Sediment Retention Structure (SRS), but increasing amounts are bypassing the structure and endangering fish habitat and increasing flood risks to downstream communities. Sampling above and below the SRS is done periodically to evaluate the performance of the structure.
CVO scientists Richard Waitt and David Ramsey are authors on a newly published geospatial (GIS) database of recent volcanic deposits on Augustine Volcano, Alaska. The publication, McIntire, J., Ramsey, D.W., Thoms, E., Waitt, R.B., and Beget, J.E., 2012, Database for volcanic processes and geology of Augustine Volcano, Alaska: U.S. Geological Survey Data Series 677 (database for USGS Professional Paper 1762, by Waitt and Beget), is available from the USGS publications website. Augustine is a frequently active island volcano in Cook Inlet.
Educators, read this announcement about Conversations with Scientists webinars. Programs are intended for middle and high school classrooms. The registration deadline has been extended through March 27th for the March 29th Crater Lake program.
Starting at approximately 22:00 pm PST on 7 March 2012, a small swarm of earthquakes has been occurring near Mount Hood. The earthquakes locate approximately 4 miles south-southwest of the summit of the volcano (~1 mile east of Government Camp) at depths of 2-4 miles. Between 22:00 PST March 7 and 16:00 PST March 9, over a dozen small earthquakes have been located by the Pacific Northwest Seismic Network (PNSN), with magnitudes ranging from 0.0 to 1.7. Typically, several earthquake swarms occur each year at Mount Hood, with some lasting for hours, others lasting for days to weeks. The March 7-9 swarm locates in roughly the same area as previous swarms, including swarms that occurred in February 1998 and September 2001. It is located 2-3 miles west of a swarm that occurred 22-23 February 2012.
For more details about Hood seismicity, visit the PNSN Mount Hood web page. For background information about swarms at Mount Hood, visit the PNSN web site for an excellent blog posting at PNSN Hood swarm blog
During August 2011, scientists and volunteers from the USGS Cascades Volcano Observatory (CVO) installed eight new real-time seismic and deformation (GPS) volcano monitoring stations around Newberry Volcano.
Over the last several months scientists at USGS-CVO and PNSN have been studying data from these new stations. They now have an adequate baseline understanding of activity at Newberry Volcano against which to compare future signs of unrest.
An Information Statement about the monitoring network was issued today.
The USGS and the US Forest Service have published a fact sheet about Newberry Volcano in Central Oregon. Learn about the geologic history, diverse styles of volcanism, volcanic hazards, monitoring and research at the largest volcano in the Cascades by reading the fact sheet on-line.
The U.S. ranks as one of the top countries in the world in the number of young, active volcanoes. The spectrum of volcanism includes explosive stratovolcanoes, effusive shield volcanoes, and restless calderas. Between 1980 and 2008, 43 volcanoes within the U.S. produced 95 eruptions and 32 episodes of unrest, the majority of which occurred in Alaska. A description and chronology of these eruptions and periods of unrest and a list of published literature is available at the USGS Publications Warehouse.
As the understanding of volcanic activity and hazards has grown over the years, so have the extent and types of monitoring networks and techniques available to detect early signs of anomalous volcanic behavior. This increased capability is providing us with a more accurate gauge of volcanic activity in the U.S. and at volcanoes monitored by CVO.
Mount St. Helens climbing permits are available for the 2012 summer season. U.S. Forest Service climbing permits are administered through the Mount St. Helens Institute which also offers a variety of educational programs related to Mount St. Helens. For more information, visit the U.S. Forest Service or Mount St. Helens Institute websites.
Beginning at approximately 12:30 pm PST on 23 February 2012 a small swarm of earthquakes occurred at Mount Hood. The earthquakes are approximately 4 miles south southeast of the summit of the volcano, and are occurring at depths of 3-5 miles. Between 12:30 PST Thursday and 8:00 PST Friday, more than 25 small earthquakes were located by the Pacific Northwest Seismic Network (PNSN), with magnitudes ranging from 0.1 to 1.7. Over the last 24 hours (through Saturday late-morning) no additional earthquakes occurred. Typically, several earthquake swarms occur each year at Mount Hood, with some lasting for hours, others lasting for days to weeks. The February 23-24 swarm locates in roughly the same area as previous swarms.
For more details about this swarm, visit the PNSN web site for an excellent blog posting about the swarm at PNSN blog as well as their Mount Hood seismicity map with locations of the swarm events at PNSN Mount Hood page
Beginning at approximately 12:30 pm PST on 23 February 2012 a small swarm of earthquakes occurred at Mount Hood. The earthquakes are approximately 4 miles south southeast of the summit of the volcano, and are occurring at depths of 3-5 miles. Between 12:30 and 2:30 there had been 15 small earthquakes ranging in magnitude from -0.2 to 1.8. Typically, several earthquake swarms occur each year at Mount Hood and this swarm is located in the same area as other previous swarms.
To see a map of where the earthquakes are occurring please visit the Pacific Northwest Seismic Network (PNSN) web site: PNSN
We are currently upgrading our website to provide a new look and improved functionality. When completed, the website will offer streamlined access to information about volcano hazards and preparedness, maps, images, monitoring data, and volcano histories.
Many of the links on this new home page will take you into the original CVO website, and these will gradually change as content is updated. Check back frequently.